This function estimates over 40 Metrics for assessing the quality of Machine Learning Models. The purpose is to provide a wrapper which brings all the metrics on the table and makes it easier to use them to select a model.
Arguments
- Observed
The Observed data in a data frame format
- yvalue
The Response variable of the estimated Model
- Model
The Estimated Model (Model = a + bx)
- K
The number of variables in the estimated Model to consider
- Name
The Name of the Models that need to be specified. They are ARIMA, Values if the model computes the fitted value without estimation like Essembles, SMOOTH (smooth.spline), Logit, Ensembles based on weight - EssemWet, QUADRATIC polynomial, SPLINE polynomial.
- Form
Form of the Model Estimated (LM, ALM, GLM, N-LM, ARDL)
- kutuf
Cutoff for the Estimated values (defaults to 0.5 if not specified)
- TTy
Type of response variable (Numeric or Response - like binary)
Value
A list with the following components:
Absolute Error
of the Model.
Absolute Percent Error
of the Model.
Accuracy
of the Model.
Adjusted R Square
of the Model.
`Akaike's` Information Criterion AIC
of the Model.
Area under the ROC curve (AUC)
of the Model.
Average Precision at k
of the Model.
Bias
of the Model.
Brier score
of the Model.
Classification Error
of the Model.
F1 Score
of the Model.
fScore
of the Model.
GINI Coefficient
of the Model.
kappa statistic
of the Model.
Log Loss
of the Model.
`Mallow's` cp
of the Model.
Matthews Correlation Coefficient
of the Model.
Mean Log Loss
of the Model.
Mean Absolute Error
of the Model.
Mean Absolute Percent Error
of the Model.
Mean Average Precision at k
of the Model.
Mean Absolute Scaled Error
of the Model.
Median Absolute Error
of the Model.
Mean Squared Error
of the Model.
Mean Squared Log Error
of the Model.
Model turning point error
of the Model.
Negative Predictive Value
of the Model.
Percent Bias
of the Model.
Positive Predictive Value
of the Model.
Precision
of the Model.
R Square
of the Model.
Relative Absolute Error
of the Model.
Recall
of the Model.
Root Mean Squared Error
of the Model.
Root Mean Squared Log Error
of the Model.
Root Relative Squared Error
of the Model.
Relative Squared Error
of the Model.
`Schwarz's` Bayesian criterion BIC
of the Model.
Sensitivity
of the Model.
specificity
of the Model.
Squared Error
of the Model.
Squared Log Error
of the Model.
Symmetric Mean Absolute Percentage Error
of the Model.
Sum of Squared Errors
of the Model.
True negative rate
of the Model.
True positive rate
of the Model.
Examples
library(splines)
Model <- lm(states ~ bs(sequence, knots = c(30, 115)), data = Data)
MLMetrics(Observed = Data, yvalue = Data$states, Model = Model, K = 2,
Name = "Linear", Form = "LM", kutuf = 0, TTy = "Number")
#> Warning: NaNs produced
#> Warning: actual should be a list of vectors. Converting to a list.
#> Warning: predicted should be a list of vectors. Converting to a list.
#> $`Absolute Error`
#> [1] 460
#>
#> $`Absolute Percent Error`
#> [1] 51
#>
#> $Accuracy
#> [1] 0
#>
#> $`Adjusted R Square`
#> [1] 0.77
#>
#> $`Akaike's Information Criterion AIC`
#> [1] 1000
#>
#> $`Area under the ROC curve (AUC)`
#> [1] 0
#>
#> $`Average Precision at k`
#> [1] 0
#>
#> $Bias
#> [1] 1.9e-17
#>
#> $`Brier score`
#> [1] 8
#>
#> $`Classification Error`
#> [1] 1
#>
#> $`F1 Score`
#> [1] 0
#>
#> $fScore
#> [1] 0
#>
#> $`GINI Coefficient`
#> [1] 0.8
#>
#> $`kappa statistic`
#> [1] 0
#>
#> $`Log Loss`
#> [1] Inf
#>
#> $`Mallow's cp`
#> [1] 3
#>
#> $`Matthews Correlation Coefficient`
#> [1] 0
#>
#> $`Mean Log Loss`
#> [1] -480
#>
#> $`Mean Absolute Error`
#> [1] 2.3
#>
#> $`Mean Absolute Percent Error`
#> [1] 0.25
#>
#> $`Mean Average Precision at k`
#> [1] 0
#>
#> $`Mean Absolute Scaled Error`
#> [1] 0.74
#>
#> $`Median Absolute Error`
#> [1] 1.9
#>
#> $`Mean Squared Error`
#> [1] 8.4
#>
#> $`Mean Squared Log Error`
#> [1] 0.072
#>
#> $`Model turning point error`
#> [1] 110
#>
#> $`Negative Predictive Value`
#> [1] 0
#>
#> $`Percent Bias`
#> [1] -0.1
#>
#> $`Positive Predictive Value`
#> [1] 0
#>
#> $Precision
#> [1] 1
#>
#> $`R Square`
#> [1] 0.78
#>
#> $`Relative Absolute Error`
#> [1] 0.47
#>
#> $Recall
#> [1] 1
#>
#> $`Root Mean Squared Error`
#> [1] 2.9
#>
#> $`Root Mean Squared Log Error`
#> [1] 0.27
#>
#> $`Root Relative Squared Error`
#> [1] 0.47
#>
#> $`Relative Squared Error`
#> [1] 0.22
#>
#> $`Schwarz's Bayesian criterion BIC`
#> [1] 1000
#>
#> $Sensitivity
#> [1] 0
#>
#> $specificity
#> [1] 0
#>
#> $`Squared Error`
#> [1] 1700
#>
#> $`Squared Log Error`
#> [1] 14
#>
#> $`Symmetric Mean Absolute Percentage Error`
#> [1] 0.21
#>
#> $`Sum of Squared Errors`
#> [1] 1700
#>
#> $`True negative rate`
#> [1] 0
#>
#> $`True positive rate`
#> [1] 0
#>