Skip to contents

This function retrieves the latent factors and their variable loadings which can be used as R objects to perform other analysis.

Usage

model_factors(data, DATA, RC = "No")

Arguments

data

An R object obtained from exploratory factor analysis (EFA) using the fa function in psych package.

DATA

A data.frame, the raw data used to carry out the parallel analysis to obtain data object.

RC

Optional factor indicating whether resilience capacity is to be estimated but defaults to NULL once the number of variables in the data is not sufficient, i.e. < 20. To estimate, turn it to "Yes".

Value

A list with the following components:

Loadings data

dataframe of the factor loadings from the data.

Factors extracted

dataframe of retrieved latent factors.

factored data

dataframe of latent data based the product of recovered latent factors and the on raw data.

Factors list

A list of vectors of individual latent factors recovered from the data. However, to make it usable, the vector should be bind with the names of the variables in the data and the NA removed.

Resilence capacity

A vector of the resilience capacity if the data is prepared for that otherwise NULL.

Examples

library(psych)
library(readr)
Data <- Quicksummary
GGn <- names(Data)
GG <- ncol(Data)
GGx <- c(paste0('x0', 1 : 9), paste("x", 10 : ncol(Data), sep = ""))
names(Data) <- GGx
lll <- fa.parallel(Data, fm = "minres", fa = "fa")

#> Parallel analysis suggests that the number of factors =  5  and the number of components =  NA 
dat <- fa(Data, nfactors = lll[["nfact"]], rotate = "varimax",fm = "minres")

model_factors(data = dat, DATA = Data)
#> 
#> Loadings:
#>     MR1    MR2    MR3    MR5    MR4   
#> x11  0.513  0.053  0.124  0.217  0.137
#> x12  0.611  0.127 -0.090  0.075  0.134
#> x13  0.559  0.354  0.115  0.020 -0.172
#> x20  0.556  0.049  0.083  0.306  0.059
#> x24  0.617 -0.284 -0.168  0.056  0.527
#> x25  0.718 -0.169  0.063  0.065  0.196
#> x26  0.595  0.048  0.104  0.205  0.139
#> x01  0.124  0.625 -0.077 -0.066  0.066
#> x02  0.039  0.783 -0.012  0.206  0.541
#> x10  0.254  0.631 -0.139  0.255 -0.081
#> x28 -0.086 -0.610  0.092  0.320  0.111
#> x04  0.239 -0.176  0.740 -0.101 -0.039
#> x05  0.149  0.065  0.792  0.074 -0.015
#> x06 -0.043 -0.260  0.720  0.157  0.186
#> x08 -0.130  0.016  0.594  0.255  0.452
#> x17  0.142 -0.192  0.044  0.667  0.137
#> x18  0.263  0.161 -0.041  0.527  0.073
#> x19  0.290  0.066  0.069  0.592  0.134
#> x03  0.087 -0.015  0.309  0.286  0.523
#> x07  0.302 -0.031  0.240  0.417  0.090
#> x09  0.112 -0.301  0.305  0.403  0.154
#> x14  0.345  0.153  0.203  0.203 -0.080
#> x15  0.480  0.275  0.262  0.069 -0.181
#> x16  0.125 -0.299  0.346  0.374  0.291
#> x21  0.492 -0.037  0.064  0.344 -0.065
#> x22  0.303 -0.238  0.039  0.286  0.481
#> x23  0.360 -0.440  0.021  0.207  0.499
#> x27         0.092  0.056         0.465
#> x29  0.216 -0.392  0.355  0.070  0.262
#> 
#>                  MR1   MR2   MR3   MR5   MR4
#> SS loadings    3.854 2.895 2.786 2.441 2.203
#> Proportion Var 0.133 0.100 0.096 0.084 0.076
#> Cumulative Var 0.133 0.233 0.329 0.413 0.489
#> $`Loadings data`
#>    Factor    MR1    MR2    MR3    MR5    MR4
#> 1       1  0.513  0.053  0.124  0.217  0.137
#> 10     10  0.254  0.631 -0.139  0.255 -0.081
#> 11     11 -0.086 -0.610  0.092  0.320  0.111
#> 12     12  0.239 -0.176  0.740 -0.101 -0.039
#> 13     13  0.149  0.065  0.792  0.074 -0.015
#> 14     14 -0.043 -0.260  0.720  0.157  0.186
#> 15     15 -0.130  0.016  0.594  0.255  0.452
#> 16     16  0.142 -0.192  0.044  0.667  0.137
#> 17     17  0.263  0.161 -0.041  0.527  0.073
#> 18     18  0.290  0.066  0.069  0.592  0.134
#> 19     19  0.087 -0.015  0.309  0.286  0.523
#> 2       2  0.611  0.127 -0.090  0.075  0.134
#> 20     20  0.302 -0.031  0.240  0.417  0.090
#> 21     21  0.112 -0.301  0.305  0.403  0.154
#> 22     22  0.345  0.153  0.203  0.203 -0.080
#> 23     23  0.480  0.275  0.262  0.069 -0.181
#> 24     24  0.125 -0.299  0.346  0.374  0.291
#> 25     25  0.492 -0.037  0.064  0.344 -0.065
#> 26     26  0.303 -0.238  0.039  0.286  0.481
#> 27     27  0.360 -0.440  0.021  0.207  0.499
#> 28     28  0.000  0.092  0.056  0.000  0.465
#> 29     29  0.216 -0.392  0.355  0.070  0.262
#> 3       3  0.559  0.354  0.115  0.020 -0.172
#> 4       4  0.556  0.049  0.083  0.306  0.059
#> 5       5  0.617 -0.284 -0.168  0.056  0.527
#> 6       6  0.718 -0.169  0.063  0.065  0.196
#> 7       7  0.595  0.048  0.104  0.205  0.139
#> 8       8  0.124  0.625 -0.077 -0.066  0.066
#> 9       9  0.039  0.783 -0.012  0.206  0.541
#> 
#> $`Factors extracted`
#> # A tibble: 29 × 6
#>    Factor   MR1    MR2   MR3   MR5   MR4
#>    <chr>  <dbl>  <dbl> <dbl> <dbl> <dbl>
#>  1 1      0.513  0     0     0     0    
#>  2 10     0      0.631 0     0     0    
#>  3 11     0     -0.61  0     0     0    
#>  4 12     0      0     0.74  0     0    
#>  5 13     0      0     0.792 0     0    
#>  6 14     0      0     0.72  0     0    
#>  7 15     0      0     0.594 0     0.452
#>  8 16     0      0     0     0.667 0    
#>  9 17     0      0     0     0.527 0    
#> 10 18     0      0     0     0.592 0    
#> # ℹ 19 more rows
#> 
#> $`factored data`
#>        MR1    MR2    MR3    MR5    MR4
#> 1   19.292 -3.244  5.368  9.418 11.788
#> 2   17.852 -2.068  5.368  9.015 11.788
#> 3   17.804  1.711  5.368  6.892 11.788
#> 4   19.292 -3.244  5.368  9.418 11.788
#> 5   19.292 -3.244  5.368  8.826 11.788
#> 6   19.292 -3.244  5.368  9.418 11.788
#> 7   17.852 -3.244  4.628  7.434 12.253
#> 8   19.292 -3.244  5.368  8.826 11.788
#> 9   19.292 -3.244  5.368  8.826 11.788
#> 10  17.852 -3.244  4.628  7.434 12.253
#> 11  13.185 -2.083  4.180  6.183  7.375
#> 12  12.867 -1.643  3.440  8.781  4.948
#> 13   7.193  0.472  5.786  2.606  2.947
#> 14  11.210 -1.643  2.846  2.606  4.919
#> 15   9.629 -1.861  5.890  5.387  4.450
#> 16  20.614 -2.963  4.378  3.725  9.963
#> 17  11.499 -2.523  3.440  6.435  6.892
#> 18   5.141 -0.811  2.846  2.606  2.947
#> 19   7.193 -0.811  5.806  3.133  2.947
#> 20  12.590 -2.502  7.912  6.852  6.892
#> 21  20.885  0.470 14.230 10.550 14.933
#> 22  22.114  0.300 13.438 10.035 16.941
#> 23  19.346  1.503 14.230 10.086 14.520
#> 24  13.861  0.438  5.870  6.764 11.766
#> 25  16.868  1.476  3.586  8.162 11.684
#> 26  11.735  0.098  5.066  6.236  9.722
#> 27  20.465  2.733 10.018  7.812 10.087
#> 28  13.972  0.708  7.694  7.570 10.626
#> 29  22.698  0.300 12.916 11.559 14.497
#> 30  14.522  0.463 10.882  7.887 10.632
#> 31  23.309  0.252 12.124 12.613 15.519
#> 32  22.708  0.300 12.718 12.438 15.426
#> 33  16.808 -1.708 11.312  7.924 11.397
#> 34  15.782 -0.458 11.312  7.924 12.327
#> 35  16.808 -0.925 11.312  8.327 12.868
#> 36  15.782 -1.708 11.312  7.924 11.397
#> 37  15.782 -1.708 11.312  7.924 11.397
#> 38  16.338 -2.100 11.312  7.924 11.397
#> 39  13.827 -2.100 12.176  8.112 10.858
#> 40  16.454 -1.660 11.312  7.924 12.882
#> 41  15.782 -1.708 11.312  7.924 11.397
#> 42  15.782 -0.925 11.312  7.924 11.938
#> 43  11.057 -0.731  6.160  9.948  7.714
#> 44  11.057 -0.731  6.160  9.948  7.714
#> 45  12.518 -0.901  9.258  7.430  8.258
#> 46  12.271  0.053  5.870  9.004  6.416
#> 47  10.565 -0.949  4.920  8.724  6.852
#> 48  11.057 -0.731  6.160  9.948  7.714
#> 49  11.017 -0.339  7.620  8.711  8.121
#> 50  13.945 -0.827  8.340  8.522  6.746
#> 51  11.057 -0.731  6.160  9.142  7.714
#> 52  12.103 -3.355  8.664  8.174  8.756
#> 53  13.371 -2.502  7.172  7.475  7.822
#> 54  13.383 -1.182  9.694  8.406 10.162
#> 55  10.713 -1.182  9.100  7.475  7.694
#> 56  11.141 -2.502  8.716  9.031  9.333
#> 57  11.226 -1.182  7.172  5.894  6.790
#> 58  12.106 -2.502  8.412  9.031  9.191
#> 59  13.646 -2.502  9.476  9.031  9.814
#> 60  12.149 -3.286  8.412  9.031  8.726
#> 61  13.851 -2.502 13.636  8.439 11.199
#> 62  14.263 -3.678 11.978  9.031 12.659
#> 63  16.379 -2.439  9.476  8.471  8.319
#> 64  13.591 -2.089 14.230  9.808 11.833
#> 65  15.102 -3.292 14.230 10.642 11.709
#> 66  20.424 -1.781  8.538 10.475  9.803
#> 67  19.226 -1.580  9.998  8.536  8.358
#> 68  11.690 -3.414 10.664  6.925 10.243
#> 69  13.545 -0.811  4.628  5.568  9.722
#> 70  16.446 -1.431 13.636  8.504 10.347
#> 71  23.019 -3.663  9.944 11.836 14.283
#> 72  18.596 -1.171  8.902  7.857 10.126
#> 73  15.379 -2.238  7.224  8.211  8.858
#> 74  12.999 -2.238  7.224  8.211  8.858
#> 75  12.999 -2.238  7.224  8.211  8.858
#> 76  14.763 -3.414  8.810  6.449  8.937
#> 77  14.899 -1.628  5.838  6.449 10.456
#> 78  18.292 -1.829 10.050 10.841 10.348
#> 79  16.149 -1.781  9.258  7.527  7.857
#> 80  18.245 -2.412  7.944  9.480  9.862
#> 81  19.021 -2.852  7.818  9.897 10.348
#> 82  17.677 -2.242 10.090 10.410 10.348
#> 83   8.111 -0.557  6.734 11.179  4.450
#> 84  18.296 -1.393  7.600  8.967 12.269
#> 85  12.231 -2.068 11.384  6.605  8.419
#> 86  14.079 -4.055  9.132  8.770 10.722
#> 87  12.986 -1.989  6.466  6.686  5.320
#> 88  13.523 -1.798 10.498  8.223  5.777
#> 89  22.984 -4.686  8.110  8.554 11.965
#> 90  11.049 -3.060 10.270 12.503  6.965
#> 91  11.825 -2.083 11.998  7.448  8.837
#> 92  13.245 -1.622 10.342  7.363  4.919
#> 93  11.843 -2.364 10.196  5.879  6.421
#> 94  15.614 -1.733  8.320  7.327  8.774
#> 95  19.005 -3.286  8.464  7.605 11.788
#> 96  17.447 -2.364  5.692  6.988  5.894
#> 97  18.681 -1.580  5.692  6.988  6.948
#> 98  15.614 -1.733  8.320  7.327  8.774
#> 99  18.883 -1.733  5.692  6.018  7.870
#> 100 16.185 -2.364  5.692  7.605  5.894
#> 101 11.358 -2.295  5.672  8.851  4.345
#> 102 14.111 -3.244  5.692  6.396  5.900
#> 103 15.983 -2.364  5.692  6.018  6.483
#> 
#> $`Factors list`
#> $`Factors list`$MR1
#>  [1] 0.513    NA    NA    NA    NA    NA    NA    NA    NA    NA    NA 0.611
#> [13]    NA    NA    NA 0.480    NA 0.492    NA    NA    NA    NA 0.559 0.556
#> [25] 0.617 0.718 0.595    NA    NA
#> 
#> $`Factors list`$MR2
#>  [1]    NA 0.631    NA    NA    NA    NA    NA    NA    NA    NA    NA    NA
#> [13]    NA    NA    NA    NA    NA    NA    NA    NA    NA    NA    NA    NA
#> [25]    NA    NA    NA 0.625 0.783
#> 
#> $`Factors list`$MR3
#>  [1]    NA    NA    NA 0.740 0.792 0.720 0.594    NA    NA    NA    NA    NA
#> [13]    NA    NA    NA    NA    NA    NA    NA    NA    NA    NA    NA    NA
#> [25]    NA    NA    NA    NA    NA
#> 
#> $`Factors list`$MR5
#>  [1]    NA    NA    NA    NA    NA    NA    NA 0.667 0.527 0.592    NA    NA
#> [13] 0.417 0.403    NA    NA    NA    NA    NA    NA    NA    NA    NA    NA
#> [25]    NA    NA    NA    NA    NA
#> 
#> $`Factors list`$MR4
#>  [1]    NA    NA    NA    NA    NA    NA 0.452    NA    NA    NA 0.523    NA
#> [13]    NA    NA    NA    NA    NA    NA 0.481 0.499 0.465    NA    NA    NA
#> [25] 0.527    NA    NA    NA 0.541
#> 
#> 
#> $`Resilence capacity`
#> NULL
#>