There are three main types of ranking: Standard competition, Ordinal and Fractional. Garrett's Ranking Technique is the application of fractional ranking in which the data points are ordered and given an ordinal number/rank. The ordering and ranking provide additional information which may not be available from frequency distribution. Again, the ordering is based on the level of seriousness or severity of the data point from the view point of the respondent. Ranking enables ease of comparison and makes grouping more meaningful. It is used in social science, psychology and other survey types of research. This functions performs Garrett Ranking of up to 15 ranks.
Usage
garrett_ranking(data, num_rank, ranking = NULL, m_rank = c(2:15))
Arguments
- data
The data for the Garrett Ranking, must be a
data.frame
.- num_rank
A vector representing the number of ranks applied to the data. If the data is a five-point Likert-type data, then number of ranks is 5.
- ranking
A vector of list representing the ranks applied to the data. If not available, positional ranks are applied.
- m_rank
The scope of the ranking methods which is between 2 and 15.
Value
A list with the following components:
Data mean table
Table of data ranked using simple average.
Garrett ranked data
Table of data ranked using Garrett mean score.
Garrett value
Table of ranking Garrett values
Examples
garrett_data <- data.frame(garrett_data)
ranking <- c("Serious constraint", "Constraint",
"Not certain it is a constraint", "Not a constraint",
"Not a serious constraint")
## ranking is supplied
garrett_ranking(garrett_data, 5, ranking)
#> New names:
#> • `` -> `...1`
#> • `` -> `...8`
#> $`Data mean table`
#> S/No Description Mean Remark Rank
#> 1 1 S1 14.8 Above 1
#> 2 2 S2 8.2 Above 2
#> 3 7 S7 7.0 Above 3
#> 4 13 S13 7.0 Above 4
#> 5 3 S3 6.0 Above 5
#> 6 9 S9 4.5 Above 6
#> 7 15 S15 4.5 Above 7
#> 8 6 S6 4.0 Above 8
#> 9 12 S12 4.0 Above 9
#> 10 5 S5 3.4 Above 10
#> 11 11 S11 3.4 Above 11
#> 12 4 S4 3.3 Above 12
#> 13 10 S10 3.3 Above 13
#> 14 8 S8 1.9 Below 14
#> 15 14 S14 1.9 Below 15
#>
#> $`Garrett value`
#> # A tibble: 5 × 4
#> Number `Garrett point` `Garrett index` `Garrett value`
#> <dbl> <dbl> <dbl> <dbl>
#> 1 1 3.33 15 85
#> 2 2 10 25 75
#> 3 3 16.7 31 69
#> 4 4 23.3 36 64
#> 5 5 30 40 60
#>
#> $`Garrett ranked data`
#> S/No Description Serious constraint Constraint
#> 1 2 S2 5 3
#> 2 9 S9 7 6
#> 3 15 S15 7 6
#> 4 5 S5 10 2
#> 5 11 S11 10 2
#> 6 4 S4 4 4
#> 7 10 S10 4 4
#> 8 3 S3 1 2
#> 9 1 S1 0 0
#> 10 6 S6 0 4
#> 11 12 S12 0 4
#> 12 7 S7 0 2
#> 13 13 S13 0 2
#> 14 8 S8 0 0
#> 15 14 S14 0 0
#> Not certain it is a constraint Not a constraint Not a serious constraint
#> 1 2 2 1
#> 2 0 5 1
#> 3 0 5 1
#> 4 8 5 0
#> 5 8 5 0
#> 6 6 7 3
#> 7 6 7 3
#> 8 5 5 1
#> 9 2 1 0
#> 10 6 5 6
#> 11 6 5 6
#> 12 0 2 2
#> 13 0 2 2
#> 14 5 2 17
#> 15 5 2 17
#> Total Total Garrett Score Mean score Rank
#> 1 13 976 75 1
#> 2 19 1425 75 2
#> 3 19 1425 75 3
#> 4 25 1872 75 4
#> 5 25 1872 75 5
#> 6 24 1682 70 6
#> 7 24 1682 70 7
#> 8 14 960 69 8
#> 9 3 202 67 9
#> 10 21 1394 66 10
#> 11 21 1394 66 11
#> 12 6 398 66 12
#> 13 6 398 66 13
#> 14 24 1493 62 14
#> 15 24 1493 62 15
#>
# ranking not supplied
garrett_ranking(garrett_data, 5)
#> New names:
#> • `` -> `...1`
#> • `` -> `...8`
#> $`Data mean table`
#> S/No Description Mean Remark Rank
#> 1 1 S1 14.8 Above 1
#> 2 2 S2 8.2 Above 2
#> 3 7 S7 7.0 Above 3
#> 4 13 S13 7.0 Above 4
#> 5 3 S3 6.0 Above 5
#> 6 9 S9 4.5 Above 6
#> 7 15 S15 4.5 Above 7
#> 8 6 S6 4.0 Above 8
#> 9 12 S12 4.0 Above 9
#> 10 5 S5 3.4 Above 10
#> 11 11 S11 3.4 Above 11
#> 12 4 S4 3.3 Above 12
#> 13 10 S10 3.3 Above 13
#> 14 8 S8 1.9 Below 14
#> 15 14 S14 1.9 Below 15
#>
#> $`Garrett value`
#> # A tibble: 5 × 4
#> Number `Garrett point` `Garrett index` `Garrett value`
#> <dbl> <dbl> <dbl> <dbl>
#> 1 1 3.33 15 85
#> 2 2 10 25 75
#> 3 3 16.7 31 69
#> 4 4 23.3 36 64
#> 5 5 30 40 60
#>
#> $`Garrett ranked data`
#> S/No Description 1st Rank 2nd Rank 3rd Rank 4th Rank 5th Rank Total
#> 1 2 S2 5 3 2 2 1 13
#> 2 9 S9 7 6 0 5 1 19
#> 3 15 S15 7 6 0 5 1 19
#> 4 5 S5 10 2 8 5 0 25
#> 5 11 S11 10 2 8 5 0 25
#> 6 4 S4 4 4 6 7 3 24
#> 7 10 S10 4 4 6 7 3 24
#> 8 3 S3 1 2 5 5 1 14
#> 9 1 S1 0 0 2 1 0 3
#> 10 6 S6 0 4 6 5 6 21
#> 11 12 S12 0 4 6 5 6 21
#> 12 7 S7 0 2 0 2 2 6
#> 13 13 S13 0 2 0 2 2 6
#> 14 8 S8 0 0 5 2 17 24
#> 15 14 S14 0 0 5 2 17 24
#> Total Garrett Score Mean score Rank
#> 1 976 75 1
#> 2 1425 75 2
#> 3 1425 75 3
#> 4 1872 75 4
#> 5 1872 75 5
#> 6 1682 70 6
#> 7 1682 70 7
#> 8 960 69 8
#> 9 202 67 9
#> 10 1394 66 10
#> 11 1394 66 11
#> 12 398 66 12
#> 13 398 66 13
#> 14 1493 62 14
#> 15 1493 62 15
#>
# you can rank subset of the data
garrett_ranking(garrett_data, 8)
#> New names:
#> • `` -> `...1`
#> • `` -> `...11`
#> $`Data mean table`
#> S/No Description Mean Remark Rank
#> 1 1 S1 14.8 Above 1
#> 2 2 S2 8.2 Above 2
#> 3 7 S7 7.0 Above 3
#> 4 13 S13 7.0 Above 4
#> 5 3 S3 6.0 Above 5
#> 6 9 S9 4.5 Above 6
#> 7 15 S15 4.5 Above 7
#> 8 6 S6 4.0 Below 8
#> 9 12 S12 4.0 Below 9
#> 10 5 S5 3.4 Below 10
#> 11 11 S11 3.4 Below 11
#> 12 4 S4 3.3 Below 12
#> 13 10 S10 3.3 Below 13
#> 14 8 S8 1.9 Below 14
#> 15 14 S14 1.9 Below 15
#>
#> $`Garrett value`
#> # A tibble: 8 × 4
#> Number `Garrett point` `Garrett index` `Garrett value`
#> <dbl> <dbl> <dbl> <dbl>
#> 1 1 3.33 15 85
#> 2 2 10 25 75
#> 3 3 16.7 31 69
#> 4 4 23.3 36 64
#> 5 5 30 40 60
#> 6 6 36.7 43 57
#> 7 7 43.3 47 53
#> 8 8 50 50 50
#>
#> $`Garrett ranked data`
#> S/No Description 1st Rank 2nd Rank 3rd Rank 4th Rank 5th Rank 6th Rank
#> 1 7 S7 4 2 2 0 2 0
#> 2 13 S13 4 2 2 0 2 0
#> 3 2 S2 2 0 2 5 3 2
#> 4 9 S9 0 4 4 7 6 0
#> 5 15 S15 0 4 4 7 6 0
#> 6 3 S3 1 3 4 1 2 5
#> 7 5 S5 0 1 0 10 2 8
#> 8 11 S11 0 1 0 10 2 8
#> 9 4 S4 0 1 3 4 4 6
#> 10 10 S10 0 1 3 4 4 6
#> 11 6 S6 0 1 1 0 4 6
#> 12 12 S12 0 1 1 0 4 6
#> 13 1 S1 0 0 0 0 0 2
#> 14 8 S8 1 0 0 0 0 5
#> 15 14 S14 1 0 0 0 0 5
#> 7th Rank 8th Rank Total Total Garrett Score Mean score Rank
#> 1 2 2 14 954 68 1
#> 2 2 2 14 954 68 2
#> 3 2 1 17 1078 63 3
#> 4 5 1 27 1699 63 4
#> 5 5 1 27 1699 63 5
#> 6 5 1 22 1370 62 6
#> 7 5 0 26 1556 60 7
#> 8 5 0 26 1556 60 8
#> 9 7 3 28 1641 59 9
#> 10 7 3 28 1641 59 10
#> 11 5 6 23 1291 56 11
#> 12 5 6 23 1291 56 12
#> 13 1 0 3 167 56 13
#> 14 2 17 25 1326 53 14
#> 15 2 17 25 1326 53 15
#>
garrett_ranking(garrett_data, 4)
#> New names:
#> • `` -> `...1`
#> • `` -> `...7`
#> $`Data mean table`
#> S/No Description Mean Remark Rank
#> 1 1 S1 14.8 Above 1
#> 2 2 S2 8.2 Above 2
#> 3 7 S7 7.0 Above 3
#> 4 13 S13 7.0 Above 4
#> 5 3 S3 6.0 Above 5
#> 6 9 S9 4.5 Above 6
#> 7 15 S15 4.5 Above 7
#> 8 6 S6 4.0 Above 8
#> 9 12 S12 4.0 Above 9
#> 10 5 S5 3.4 Above 10
#> 11 11 S11 3.4 Above 11
#> 12 4 S4 3.3 Above 12
#> 13 10 S10 3.3 Above 13
#> 14 8 S8 1.9 Below 14
#> 15 14 S14 1.9 Below 15
#>
#> $`Garrett value`
#> # A tibble: 4 × 4
#> Number `Garrett point` `Garrett index` `Garrett value`
#> <dbl> <dbl> <dbl> <dbl>
#> 1 1 3.33 15 85
#> 2 2 10 25 75
#> 3 3 16.7 31 69
#> 4 4 23.3 36 64
#>
#> $`Garrett ranked data`
#> S/No Description 1st Rank 2nd Rank 3rd Rank 4th Rank Total
#> 1 9 S9 6 0 5 1 12
#> 2 15 S15 6 0 5 1 12
#> 3 2 S2 3 2 2 1 8
#> 4 5 S5 2 8 5 0 15
#> 5 11 S11 2 8 5 0 15
#> 6 3 S3 2 5 5 1 13
#> 7 4 S4 4 6 7 3 20
#> 8 10 S10 4 6 7 3 20
#> 9 1 S1 0 2 1 0 3
#> 10 7 S7 2 0 2 2 6
#> 11 13 S13 2 0 2 2 6
#> 12 6 S6 4 6 5 6 21
#> 13 12 S12 4 6 5 6 21
#> 14 8 S8 0 5 2 17 24
#> 15 14 S14 0 5 2 17 24
#> Total Garrett Score Mean score Rank
#> 1 919 77 1
#> 2 919 77 2
#> 3 607 76 3
#> 4 1115 74 4
#> 5 1115 74 5
#> 6 954 73 6
#> 7 1465 73 7
#> 8 1465 73 8
#> 9 219 73 9
#> 10 436 73 10
#> 11 436 73 11
#> 12 1519 72 12
#> 13 1519 72 13
#> 14 1601 67 14
#> 15 1601 67 15
#>