There are three main types of ranking: Standard competition, Ordinal and Fractional. Garrett's Ranking Technique is the application of fractional ranking in which the data points are ordered and given an ordinal number/rank. The ordering and ranking provide additional information which may not be available from frequency distribution. Again, the ordering is based on the level of seriousness or severity of the data point from the view point of the respondent. Ranking enables ease of comparison and makes grouping more meaningful. It is used in social science, psychology and other survey types of research. This functions performs Garrett Ranking of up to 15 ranks.
Usage
garrett_ranking(data, num_rank, ranking = NULL, m_rank = c(2:15))
Arguments
- data
The data for the Garrett Ranking, must be a
data.frame
.- num_rank
A vector representing the number of ranks applied to the data. If the data is a five-point Likert-type data, then number of ranks is 5.
- ranking
A vector of list representing the ranks applied to the data. If not available, positional ranks are applied.
- m_rank
The scope of the ranking methods which is between 2 and 15.
Value
A list with the following components:
RII
Relative importance index.
Garrett ranked data
Table of data ranked using Garrett mean score.
Garrett value
Table of ranking Garrett values
Examples
library(readr)
garrett_data <- data.frame(garrett_data)
ranking <- c("Serious constraint", "Constraint",
"Not certain it is a constraint", "Not a constraint",
"Not a serious constraint")
## ranking is supplied
garrett_ranking(garrett_data, 5, ranking)
#> New names:
#> • `` -> `...1`
#> • `V1` -> `V1...2`
#> • `V1` -> `V1...8`
#> • `` -> `...9`
#> $`Garrett value`
#> # A tibble: 5 × 4
#> Number `Garrett point` `Garrett index` `Garrett value`
#> <dbl> <dbl> <dbl> <dbl>
#> 1 1 3.33 15 85
#> 2 2 10 25 75
#> 3 3 16.7 31 69
#> 4 4 23.3 36 64
#> 5 5 30 40 60
#>
#> $`Garrett ranked data`
#> S/No Description Serious constraint Constraint
#> 1 2 S2 5 3
#> 2 9 S9 7 6
#> 3 15 S15 7 6
#> 4 5 S5 10 2
#> 5 11 S11 10 2
#> 6 4 S4 4 4
#> 7 10 S10 4 4
#> 8 3 S3 1 2
#> 9 1 S1 0 0
#> 10 6 S6 0 4
#> 11 12 S12 0 4
#> 12 7 S7 0 2
#> 13 13 S13 0 2
#> 14 8 S8 0 0
#> 15 14 S14 0 0
#> Not certain it is a constraint Not a constraint Not a serious constraint
#> 1 2 2 1
#> 2 0 5 1
#> 3 0 5 1
#> 4 8 5 0
#> 5 8 5 0
#> 6 6 7 3
#> 7 6 7 3
#> 8 5 5 1
#> 9 2 1 0
#> 10 6 5 6
#> 11 6 5 6
#> 12 0 2 2
#> 13 0 2 2
#> 14 5 2 17
#> 15 5 2 17
#> Total Mean Total Garrett Score Mean Garrett score Total Item score
#> 1 13 8.2 976 75 48
#> 2 19 4.5 1425 75 70
#> 3 19 4.5 1425 75 70
#> 4 25 3.4 1872 75 92
#> 5 25 3.4 1872 75 92
#> 6 24 3.3 1682 70 71
#> 7 24 3.3 1682 70 71
#> 8 14 6.0 960 69 39
#> 9 3 14.8 202 67 8
#> 10 21 4.0 1394 66 50
#> 11 21 4.0 1394 66 50
#> 12 6 7.0 398 66 14
#> 13 6 7.0 398 66 14
#> 14 24 1.9 1493 62 36
#> 15 24 1.9 1493 62 36
#> Relative importance index Rank
#> 1 0.331 1
#> 2 0.483 2
#> 3 0.483 3
#> 4 0.634 4
#> 5 0.634 5
#> 6 0.490 6
#> 7 0.490 7
#> 8 0.269 8
#> 9 0.055 9
#> 10 0.345 10
#> 11 0.345 11
#> 12 0.097 12
#> 13 0.097 13
#> 14 0.248 14
#> 15 0.248 15
#>
#> $RII
#> V1 V2 V3 V4 V5
#> 1 0 0 6 2 0
#> 2 25 12 6 4 1
#> 3 5 8 15 10 1
#> 4 20 16 18 14 3
#> 5 50 8 24 10 0
#> 6 0 16 18 10 6
#> 7 0 8 0 4 2
#> 8 0 0 15 4 17
#> 9 35 24 0 10 1
#> 10 20 16 18 14 3
#> 11 50 8 24 10 0
#> 12 0 16 18 10 6
#> 13 0 8 0 4 2
#> 14 0 0 15 4 17
#> 15 35 24 0 10 1
#>
# ranking not supplied
garrett_ranking(garrett_data, 5)
#> New names:
#> • `` -> `...1`
#> • `V1` -> `V1...2`
#> • `V1` -> `V1...8`
#> • `` -> `...9`
#> $`Garrett value`
#> # A tibble: 5 × 4
#> Number `Garrett point` `Garrett index` `Garrett value`
#> <dbl> <dbl> <dbl> <dbl>
#> 1 1 3.33 15 85
#> 2 2 10 25 75
#> 3 3 16.7 31 69
#> 4 4 23.3 36 64
#> 5 5 30 40 60
#>
#> $`Garrett ranked data`
#> S/No Description 1st Rank 2nd Rank 3rd Rank 4th Rank 5th Rank Total Mean
#> 1 2 S2 5 3 2 2 1 13 8.2
#> 2 9 S9 7 6 0 5 1 19 4.5
#> 3 15 S15 7 6 0 5 1 19 4.5
#> 4 5 S5 10 2 8 5 0 25 3.4
#> 5 11 S11 10 2 8 5 0 25 3.4
#> 6 4 S4 4 4 6 7 3 24 3.3
#> 7 10 S10 4 4 6 7 3 24 3.3
#> 8 3 S3 1 2 5 5 1 14 6.0
#> 9 1 S1 0 0 2 1 0 3 14.8
#> 10 6 S6 0 4 6 5 6 21 4.0
#> 11 12 S12 0 4 6 5 6 21 4.0
#> 12 7 S7 0 2 0 2 2 6 7.0
#> 13 13 S13 0 2 0 2 2 6 7.0
#> 14 8 S8 0 0 5 2 17 24 1.9
#> 15 14 S14 0 0 5 2 17 24 1.9
#> Total Garrett Score Mean Garrett score Total Item score
#> 1 976 75 48
#> 2 1425 75 70
#> 3 1425 75 70
#> 4 1872 75 92
#> 5 1872 75 92
#> 6 1682 70 71
#> 7 1682 70 71
#> 8 960 69 39
#> 9 202 67 8
#> 10 1394 66 50
#> 11 1394 66 50
#> 12 398 66 14
#> 13 398 66 14
#> 14 1493 62 36
#> 15 1493 62 36
#> Relative importance index Rank
#> 1 0.331 1
#> 2 0.483 2
#> 3 0.483 3
#> 4 0.634 4
#> 5 0.634 5
#> 6 0.490 6
#> 7 0.490 7
#> 8 0.269 8
#> 9 0.055 9
#> 10 0.345 10
#> 11 0.345 11
#> 12 0.097 12
#> 13 0.097 13
#> 14 0.248 14
#> 15 0.248 15
#>
#> $RII
#> V1 V2 V3 V4 V5
#> 1 0 0 6 2 0
#> 2 25 12 6 4 1
#> 3 5 8 15 10 1
#> 4 20 16 18 14 3
#> 5 50 8 24 10 0
#> 6 0 16 18 10 6
#> 7 0 8 0 4 2
#> 8 0 0 15 4 17
#> 9 35 24 0 10 1
#> 10 20 16 18 14 3
#> 11 50 8 24 10 0
#> 12 0 16 18 10 6
#> 13 0 8 0 4 2
#> 14 0 0 15 4 17
#> 15 35 24 0 10 1
#>
# you can rank subset of the data
garrett_ranking(garrett_data, 8)
#> New names:
#> • `` -> `...1`
#> • `V1` -> `V1...2`
#> • `V1` -> `V1...11`
#> • `` -> `...12`
#> $`Garrett value`
#> # A tibble: 8 × 4
#> Number `Garrett point` `Garrett index` `Garrett value`
#> <dbl> <dbl> <dbl> <dbl>
#> 1 1 3.33 15 85
#> 2 2 10 25 75
#> 3 3 16.7 31 69
#> 4 4 23.3 36 64
#> 5 5 30 40 60
#> 6 6 36.7 43 57
#> 7 7 43.3 47 53
#> 8 8 50 50 50
#>
#> $`Garrett ranked data`
#> S/No Description 1st Rank 2nd Rank 3rd Rank 4th Rank 5th Rank 6th Rank
#> 1 7 S7 4 2 2 0 2 0
#> 2 13 S13 4 2 2 0 2 0
#> 3 2 S2 2 0 2 5 3 2
#> 4 9 S9 0 4 4 7 6 0
#> 5 15 S15 0 4 4 7 6 0
#> 6 3 S3 1 3 4 1 2 5
#> 7 5 S5 0 1 0 10 2 8
#> 8 11 S11 0 1 0 10 2 8
#> 9 4 S4 0 1 3 4 4 6
#> 10 10 S10 0 1 3 4 4 6
#> 11 6 S6 0 1 1 0 4 6
#> 12 12 S12 0 1 1 0 4 6
#> 13 1 S1 0 0 0 0 0 2
#> 14 8 S8 1 0 0 0 0 5
#> 15 14 S14 1 0 0 0 0 5
#> 7th Rank 8th Rank Total Mean Total Garrett Score Mean Garrett score
#> 1 2 2 14 7.0 954 68
#> 2 2 2 14 7.0 954 68
#> 3 2 1 17 8.2 1078 63
#> 4 5 1 27 4.5 1699 63
#> 5 5 1 27 4.5 1699 63
#> 6 5 1 22 6.0 1370 62
#> 7 5 0 26 3.4 1556 60
#> 8 5 0 26 3.4 1556 60
#> 9 7 3 28 3.3 1641 59
#> 10 7 3 28 3.3 1641 59
#> 11 5 6 23 4.0 1291 56
#> 12 5 6 23 4.0 1291 56
#> 13 1 0 3 14.8 167 56
#> 14 2 17 25 1.9 1326 53
#> 15 2 17 25 1.9 1326 53
#> Total Item score Relative importance index Rank
#> 1 72 0.310 1
#> 2 72 0.310 2
#> 3 76 0.328 3
#> 4 122 0.526 4
#> 5 122 0.526 5
#> 6 92 0.397 6
#> 7 99 0.427 7
#> 8 99 0.427 8
#> 9 96 0.414 9
#> 10 96 0.414 10
#> 11 63 0.272 11
#> 12 63 0.272 12
#> 13 8 0.034 13
#> 14 44 0.190 14
#> 15 44 0.190 15
#>
#> $RII
#> V1 V2 V3 V4 V5 V6 V7 V8
#> 1 0 0 0 0 0 6 2 0
#> 2 16 0 12 25 12 6 4 1
#> 3 8 21 24 5 8 15 10 1
#> 4 0 7 18 20 16 18 14 3
#> 5 0 7 0 50 8 24 10 0
#> 6 0 7 6 0 16 18 10 6
#> 7 32 14 12 0 8 0 4 2
#> 8 8 0 0 0 0 15 4 17
#> 9 0 28 24 35 24 0 10 1
#> 10 0 7 18 20 16 18 14 3
#> 11 0 7 0 50 8 24 10 0
#> 12 0 7 6 0 16 18 10 6
#> 13 32 14 12 0 8 0 4 2
#> 14 8 0 0 0 0 15 4 17
#> 15 0 28 24 35 24 0 10 1
#>
garrett_ranking(garrett_data, 4)
#> New names:
#> • `` -> `...1`
#> • `V1` -> `V1...2`
#> • `V1` -> `V1...7`
#> • `` -> `...8`
#> $`Garrett value`
#> # A tibble: 4 × 4
#> Number `Garrett point` `Garrett index` `Garrett value`
#> <dbl> <dbl> <dbl> <dbl>
#> 1 1 3.33 15 85
#> 2 2 10 25 75
#> 3 3 16.7 31 69
#> 4 4 23.3 36 64
#>
#> $`Garrett ranked data`
#> S/No Description 1st Rank 2nd Rank 3rd Rank 4th Rank Total Mean
#> 1 9 S9 6 0 5 1 12 4.5
#> 2 15 S15 6 0 5 1 12 4.5
#> 3 2 S2 3 2 2 1 8 8.2
#> 4 5 S5 2 8 5 0 15 3.4
#> 5 11 S11 2 8 5 0 15 3.4
#> 6 3 S3 2 5 5 1 13 6.0
#> 7 4 S4 4 6 7 3 20 3.3
#> 8 10 S10 4 6 7 3 20 3.3
#> 9 1 S1 0 2 1 0 3 14.8
#> 10 7 S7 2 0 2 2 6 7.0
#> 11 13 S13 2 0 2 2 6 7.0
#> 12 6 S6 4 6 5 6 21 4.0
#> 13 12 S12 4 6 5 6 21 4.0
#> 14 8 S8 0 5 2 17 24 1.9
#> 15 14 S14 0 5 2 17 24 1.9
#> Total Garrett Score Mean Garrett score Total Item score
#> 1 919 77 35
#> 2 919 77 35
#> 3 607 76 23
#> 4 1115 74 42
#> 5 1115 74 42
#> 6 954 73 34
#> 7 1465 73 51
#> 8 1465 73 51
#> 9 219 73 8
#> 10 436 73 14
#> 11 436 73 14
#> 12 1519 72 50
#> 13 1519 72 50
#> 14 1601 67 36
#> 15 1601 67 36
#> Relative importance index Rank
#> 1 0.302 1
#> 2 0.302 2
#> 3 0.198 3
#> 4 0.362 4
#> 5 0.362 5
#> 6 0.293 6
#> 7 0.440 7
#> 8 0.440 8
#> 9 0.069 9
#> 10 0.121 10
#> 11 0.121 11
#> 12 0.431 12
#> 13 0.431 13
#> 14 0.310 14
#> 15 0.310 15
#>
#> $RII
#> V1 V2 V3 V4
#> 1 0 6 2 0
#> 2 12 6 4 1
#> 3 8 15 10 1
#> 4 16 18 14 3
#> 5 8 24 10 0
#> 6 16 18 10 6
#> 7 8 0 4 2
#> 8 0 15 4 17
#> 9 24 0 10 1
#> 10 16 18 14 3
#> 11 8 24 10 0
#> 12 16 18 10 6
#> 13 8 0 4 2
#> 14 0 15 4 17
#> 15 24 0 10 1
#>