Skip to contents

There is increasing need to make user-friendly and production ready Tables for machine learning data. This function is a simplified quick summary and the output is a formatted table. This is very handy for those who do not have the time to write codes for user-friendly summaries.

Usage

quicksummary(x, Type, Cut, Up, Down, ci = 0.95)

Arguments

x

The data to be summarised. Only numeric data is allowed.

Type

The type of data to be summarised. There are two options here 1 or 2, 1 = Continuous and 2 = Likert-type

Cut

The cut-off point for Likert-type data

Up

The top Likert-type scale, for example, Agree, Constraints etc which would appear in the remark column.

Down

The lower Likert-type scale, for example, Disagree, Not a Constraint etc which would appear in the remark column.

ci

Confidence interval which is defaults to 0.95.

Value

The function returns a formatted Table of the Quick summary

ANS

The formatted Table of the summary

Examples

# Likert-type data
Up <- "Constraint"
Down <- "Not a constraint"
quicksummary(x = Quicksummary, Type = 2, Cut = 2.60, Up = Up, Down = Down)
#>                  Mean   SD SE.Mean Nobs Rank           Remark
#> Likert scores 1  4.34 1.13    0.11  103    1       Constraint
#> Likert scores 14 3.85 1.35    0.13  103    2       Constraint
#> Likert scores 3  3.49 1.36    0.13  103    3       Constraint
#> Likert scores 10 3.49 1.51    0.15  103    4       Constraint
#> Likert scores 15 3.43 1.38    0.14  103    5       Constraint
#> Likert scores 19 3.43 1.23    0.12  103    6       Constraint
#> Likert scores 17 3.41 1.25    0.12  103    7       Constraint
#> Likert scores 2  3.23 1.57    0.15  103    8       Constraint
#> Likert scores 18 3.23 1.21    0.12  103    9       Constraint
#> Likert scores 4  3.17 1.34    0.13  103   10       Constraint
#> Likert scores 7  3.07 1.32    0.13  103   11       Constraint
#> Likert scores 21 3.07 1.32    0.13  103   12       Constraint
#> Likert scores 26 3.03 1.22    0.12  103   13       Constraint
#> Likert scores 20 2.98 1.18    0.12  103   14       Constraint
#> Likert scores 16 2.94 1.47    0.14  103   15       Constraint
#> Likert scores 22 2.94 1.31    0.13  103   16       Constraint
#> Likert scores 13 2.93 1.37    0.14  103   17       Constraint
#> Likert scores 11 2.89 1.20    0.12  103   18       Constraint
#> Likert scores 25 2.88 1.31    0.13  103   19       Constraint
#> Likert scores 23 2.84 1.48    0.15  103   20       Constraint
#> Likert scores 8  2.83 1.33    0.13  103   21       Constraint
#> Likert scores 6  2.77 1.44    0.14  103   22       Constraint
#> Likert scores 24 2.71 1.30    0.13  103   23       Constraint
#> Likert scores 5  2.67 1.27    0.13  103   24       Constraint
#> Likert scores 9  2.63 1.34    0.13  103   25       Constraint
#> Likert scores 12 2.41 1.26    0.12  103   26 Not a constraint
#> Likert scores 27 2.41 1.35    0.13  103   27 Not a constraint
#> Likert scores 29 0.89 1.78    0.18  103   28 Not a constraint
#> Likert scores 28 0.26 0.83    0.08  103   29 Not a constraint

# Continuous data
x <- select(linearsystems, 1:6)
quicksummary(x = x, Type = 1)
#>          MKTcost    Age Experience Years spent in formal education
#> Mean      3911.6  38.13      11.78                           10.35
#> SD        2754.2  11.14       4.55                            5.19
#> SE.Mean    275.4   1.11       0.46                            0.52
#> Min          0.0  20.00       2.00                            0.00
#> Median    2950.0  36.50      11.00                           12.00
#> Max      14000.0  68.00      20.00                           20.00
#> Q1        1850.0  30.00       8.75                            7.00
#> Q3        5760.0  45.00      15.00                           14.00
#> Skewness     1.2   0.83       0.38                           -0.72
#> Kurtosis     1.3   0.01      -0.77                           -0.42
#> Nobs       100.0 100.00     100.00                          100.00
#>          Household size Years as a cooperative member
#> Mean               8.30                         10.16
#> SD                 3.60                          3.80
#> SE.Mean            0.36                          0.38
#> Min                0.00                          2.00
#> Median             8.00                         10.00
#> Max               17.00                         20.00
#> Q1                 5.00                          7.75
#> Q3                11.00                         12.00
#> Skewness           0.18                          0.64
#> Kurtosis          -0.37                         -0.20
#> Nobs             100.00                        100.00