Skip to contents

There is increasing need to make user-friendly and production ready Tables for machine learning data. This function is a simplified quick summary and the output is a formatted table. This is very handy for those who do not have the time to write codes for user-friendly summaries.

Usage

quicksummary(x, Type, Cut, Up, Down, ci = 0.95)

Arguments

x

The data to be summarised. Only numeric data is allowed.

Type

The type of data to be summarised. There are two options here 1 or 2, 1 = Continuous and 2 = Likert-type

Cut

The cut-off point for Likert-type data

Up

The top Likert-type scale, for example, Agree, Constraints etc which would appear in the remark column.

Down

The lower Likert-type scale, for example, Disagree, Not a Constraint etc which would appear in the remark column.

ci

Confidence interval which is defaults to 0.95.

Value

The function returns formatted tables of the Quick summary

Summary

List of two data.frames

Examples

library(tidyverse)
# Likert-type data
Up <- "Constraint"
Down <- "Not a constraint"
quicksummary(x = Quicksummary, Type = 2, Cut = 2.60, Up = Up, Down = Down)
#> $Summary
#>                  Mean   SD SE.Mean Nobs Rank           Remark
#> Likert scores 1  4.34 1.13    0.11  103    1       Constraint
#> Likert scores 14 3.85 1.35    0.13  103    2       Constraint
#> Likert scores 3  3.49 1.36    0.13  103    3       Constraint
#> Likert scores 10 3.49 1.51    0.15  103    4       Constraint
#> Likert scores 15 3.43 1.38    0.14  103    5       Constraint
#> Likert scores 19 3.43 1.23    0.12  103    6       Constraint
#> Likert scores 17 3.41 1.25    0.12  103    7       Constraint
#> Likert scores 2  3.23 1.57    0.15  103    8       Constraint
#> Likert scores 18 3.23 1.21    0.12  103    9       Constraint
#> Likert scores 4  3.17 1.34    0.13  103   10       Constraint
#> Likert scores 7  3.07 1.32    0.13  103   11       Constraint
#> Likert scores 21 3.07 1.32    0.13  103   12       Constraint
#> Likert scores 26 3.03 1.22    0.12  103   13       Constraint
#> Likert scores 20 2.98 1.18    0.12  103   14       Constraint
#> Likert scores 16 2.94 1.47    0.14  103   15       Constraint
#> Likert scores 22 2.94 1.31    0.13  103   16       Constraint
#> Likert scores 13 2.93 1.37    0.14  103   17       Constraint
#> Likert scores 11 2.89 1.20    0.12  103   18       Constraint
#> Likert scores 25 2.88 1.31    0.13  103   19       Constraint
#> Likert scores 23 2.84 1.48    0.15  103   20       Constraint
#> Likert scores 8  2.83 1.33    0.13  103   21       Constraint
#> Likert scores 6  2.77 1.44    0.14  103   22       Constraint
#> Likert scores 24 2.71 1.30    0.13  103   23       Constraint
#> Likert scores 5  2.67 1.27    0.13  103   24       Constraint
#> Likert scores 9  2.63 1.34    0.13  103   25       Constraint
#> Likert scores 12 2.41 1.26    0.12  103   26 Not a constraint
#> Likert scores 27 2.41 1.35    0.13  103   27 Not a constraint
#> Likert scores 29 0.89 1.78    0.18  103   28 Not a constraint
#> Likert scores 28 0.26 0.83    0.08  103   29 Not a constraint
#> 
#> $Means
#>                  Arithmetic Geometric Quadratic Harmonic Cubic
#> Likert scores 1        4.34       4.1      4.48      3.7   4.6
#> Likert scores 2        3.23       2.7      3.59      2.2   3.8
#> Likert scores 3        3.49       3.1      3.74      2.7   3.9
#> Likert scores 4        3.17       2.8      3.43      2.5   3.6
#> Likert scores 5        2.67       2.3      2.95      2.0   3.2
#> Likert scores 6        2.77       2.4      3.12      2.0   3.4
#> Likert scores 7        3.07       2.7      3.34      2.3   3.5
#> Likert scores 8        2.83       2.5      3.12      2.1   3.4
#> Likert scores 9        2.63       2.3      2.95      2.0   3.2
#> Likert scores 10       3.49       3.0      3.80      2.5   4.0
#> Likert scores 11       2.89       2.6      3.13      2.3   3.3
#> Likert scores 12       2.41       2.1      2.72      1.8   3.0
#> Likert scores 13       2.93       2.5      3.24      2.1   3.5
#> Likert scores 14       3.85       3.5      4.08      3.0   4.2
#> Likert scores 15       3.43       3.1      3.69      2.6   3.9
#> Likert scores 16       2.94       2.5      3.28      2.2   3.6
#> Likert scores 17       3.41       3.1      3.63      2.7   3.8
#> Likert scores 18       3.23       2.9      3.45      2.5   3.6
#> Likert scores 19       3.43       3.1      3.64      2.8   3.8
#> Likert scores 20       2.98       2.7      3.20      2.4   3.4
#> Likert scores 21       3.07       2.7      3.34      2.4   3.5
#> Likert scores 22       2.94       2.6      3.22      2.2   3.4
#> Likert scores 23       2.84       2.4      3.20      2.0   3.5
#> Likert scores 24       2.71       2.4      3.00      2.0   3.2
#> Likert scores 25       2.88       2.5      3.16      2.1   3.4
#> Likert scores 26       3.03       2.7      3.26      2.4   3.5
#> Likert scores 27       2.41       0.0      2.76      0.0   3.0
#> Likert scores 28       0.26       0.0      0.86      0.0   1.4
#> Likert scores 29       0.89       0.0      1.98      0.0   2.6
#> 

# Continuous data
x <- select(linearsystems, 1:6)
quicksummary(x = x, Type = 1)
#> $Summary
#>          MKTcost    Age Experience Years spent in formal education
#> Mean      3911.6  38.13      11.78                           10.35
#> SD        2754.2  11.14       4.55                            5.19
#> SE.Mean    275.4   1.11       0.46                            0.52
#> Min          0.0  20.00       2.00                            0.00
#> Median    2950.0  36.50      11.00                           12.00
#> Max      14000.0  68.00      20.00                           20.00
#> Q1        1850.0  30.00       8.75                            7.00
#> Q3        5760.0  45.00      15.00                           14.00
#> Skewness     1.2   0.83       0.38                           -0.72
#> Kurtosis     1.3   0.01      -0.77                           -0.42
#> Nobs       100.0 100.00     100.00                          100.00
#>          Household size Years as a cooperative member
#> Mean               8.30                         10.16
#> SD                 3.60                          3.80
#> SE.Mean            0.36                          0.38
#> Min                0.00                          2.00
#> Median             8.00                         10.00
#> Max               17.00                         20.00
#> Q1                 5.00                          7.75
#> Q3                11.00                         12.00
#> Skewness           0.18                          0.64
#> Kurtosis          -0.37                         -0.20
#> Nobs             100.00                        100.00
#> 
#> $Means
#>            MKTcost Age Experience Years spent in formal education
#> Arithmetic    3912  38       11.8                              10
#> Geometric        0  37       10.9                               0
#> Quadratic     4776  40       12.6                              12
#> Harmonic         0  35        9.8                               0
#> Cubic         5562  41       13.4                              12
#>            Household size Years as a cooperative member
#> Arithmetic            8.3                          10.2
#> Geometric             0.0                           9.5
#> Quadratic             9.0                          10.8
#> Harmonic              0.0                           8.7
#> Cubic                 9.7                          11.5
#>