Skip to contents

This function is a wrapper for scaling the fitted (predicted) values of a one-sided (positive or negative only) integer response variable of supported models. The scaling involves some log transformation of the fitted (predicted) values.

Usage

scaledlogit(x, lower, upper)

Arguments

x

The parameter to be scaled, which is the fitted values from supported models. The scaled parameter is used mainly for constrained forecasting of a response variable positive (0 - inf) or negative (-inf - 0). The scaling involves log transformation of the parameter

lower

Integer or variable representing the lower limit for the scaling (-inf or 0)

upper

Integer or variable representing the upper limit for the scaling (0 or inf)

Examples

library(Dyn4cast)
library(splines)
lower <- 1
upper <- 37
Model   <- lm(states ~ bs(sequence, knots = c(30, 115)), data = Data)
scaledlogit(x = fitted.values(Model), lower = lower,
 upper = upper)
#>       1       2       3       4       5       6       7       8       9      10 
#> -2.8342 -3.0126 -3.1861 -3.3486 -3.4918 -3.6058 -3.6807 -3.7096 -3.6911 -3.6299 
#>      11      12      13      14      15      16      17      18      19      20 
#> -3.5351 -3.4170 -3.2851 -3.1466 -3.0065 -2.8684 -2.7341 -2.6048 -2.4811 -2.3632 
#>      21      22      23      24      25      26      27      28      29      30 
#> -2.2511 -2.1445 -2.0435 -1.9476 -1.8567 -1.7706 -1.6891 -1.6119 -1.5390 -1.4702 
#>      31      32      33      34      35      36      37      38      39      40 
#> -1.4054 -1.3441 -1.2861 -1.2309 -1.1784 -1.1282 -1.0803 -1.0343 -0.9903 -0.9479 
#>      41      42      43      44      45      46      47      48      49      50 
#> -0.9072 -0.8680 -0.8302 -0.7937 -0.7585 -0.7245 -0.6917 -0.6598 -0.6291 -0.5993 
#>      51      52      53      54      55      56      57      58      59      60 
#> -0.5704 -0.5424 -0.5153 -0.4891 -0.4636 -0.4389 -0.4150 -0.3918 -0.3693 -0.3475 
#>      61      62      63      64      65      66      67      68      69      70 
#> -0.3263 -0.3058 -0.2860 -0.2667 -0.2481 -0.2300 -0.2126 -0.1957 -0.1793 -0.1635 
#>      71      72      73      74      75      76      77      78      79      80 
#> -0.1483 -0.1336 -0.1193 -0.1056 -0.0924 -0.0797 -0.0675 -0.0557 -0.0445 -0.0336 
#>      81      82      83      84      85      86      87      88      89      90 
#> -0.0233 -0.0134 -0.0039  0.0051  0.0137  0.0219  0.0296  0.0370  0.0439  0.0504 
#>      91      92      93      94      95      96      97      98      99     100 
#>  0.0566  0.0623  0.0677  0.0726  0.0773  0.0815  0.0854  0.0889  0.0921  0.0949 
#>     101     102     103     104     105     106     107     108     109     110 
#>  0.0974  0.0995  0.1013  0.1029  0.1040  0.1049  0.1055  0.1058  0.1057  0.1054 
#>     111     112     113     114     115     116     117     118     119     120 
#>  0.1048  0.1040  0.1028  0.1014  0.0998  0.0979  0.0957  0.0933  0.0907  0.0878 
#>     121     122     123     124     125     126     127     128     129     130 
#>  0.0846  0.0813  0.0777  0.0738  0.0698  0.0655  0.0610  0.0562  0.0512  0.0461 
#>     131     132     133     134     135     136     137     138     139     140 
#>  0.0407  0.0350  0.0292  0.0232  0.0169  0.0105  0.0039 -0.0030 -0.0100 -0.0173 
#>     141     142     143     144     145     146     147     148     149     150 
#> -0.0247 -0.0323 -0.0402 -0.0482 -0.0564 -0.0647 -0.0733 -0.0820 -0.0909 -0.1000 
#>     151     152     153     154     155     156     157     158     159     160 
#> -0.1093 -0.1187 -0.1283 -0.1381 -0.1481 -0.1582 -0.1685 -0.1789 -0.1895 -0.2003 
#>     161     162     163     164     165     166     167     168     169     170 
#> -0.2112 -0.2223 -0.2335 -0.2449 -0.2565 -0.2682 -0.2801 -0.2921 -0.3043 -0.3166 
#>     171     172     173     174     175     176     177     178     179     180 
#> -0.3291 -0.3417 -0.3544 -0.3674 -0.3804 -0.3937 -0.4070 -0.4205 -0.4342 -0.4480 
#>     181     182     183     184     185     186     187     188     189     190 
#> -0.4620 -0.4761 -0.4903 -0.5047 -0.5193 -0.5340 -0.5488 -0.5638 -0.5790 -0.5943 
#>     191     192     193     194     195     196     197     198     199     200 
#> -0.6097 -0.6253 -0.6411 -0.6570 -0.6731 -0.6893 -0.7057 -0.7222 -0.7389 -0.7558